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Numerical solutions for diffusion-controlled 
growth of spheres from finite initial size 

M. CABLE, J. R. FRADE 
Department of Ceramics Glasses and Polymers, University of Sheffield, Northumberland Road, 
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Efficient numerical methods have been developed to predict the diffusion-controlled growth of 
an isolated sphere of finite initial size in conditions of spherical symmetry. Analytical solutions 
for growth from zero size have also been re-examined and it is shown that Scriven's assump- 
tion of constant density is unnecessary; it is only required that the partial molar volumes of 
solute and solvent be independent of concentration. Detailed comparisons of analytical 
predictions and numerical results for both size and concentration profile confirm the accuracy 
of the numerical techniques for wide ranges of the parameters concerned. 

1. Introduct ion 
Growth or dissolution of particles, drops or bubbles is 
important in many chemical and physical processes. 
Particular cases may be influenced by many factors 
but solution of even the simplest case, diffusion- 
controlled growth or dissolution of an isolated sphere 
with spherical symmetry, constant diffusivity and con- 
stant conditions at the interface, offers sufficient 
challenge to deserve thorough study. 

An analytical solution for heat conduction in a 
region bounded internally by a sphere has long been 
available (Carslaw and Jaeger [1]) hut cannot properly 
allow for either change in the size of the sphere or 
radial convection in the surrounding medium that 
may accompany change in size of the sphere. Frank [2] 
showed that analytical solutions for growth from zero 
size can be obtained when the volume of the system is 
constant and there is noconvective flow in the liquid 
outside the sphere, if transient effects are neglected. 
Frank's solution is a reasonable approximation for 
many examples involving solids but not for other cases 
such as gas bubbles. Scriven [3] considerably extended 
the model for growth from zero size by again assum- 
ing the existence of a self-similar concentration profile 
but allowing for a change in volume as solute was 
transferred across the interface, although still assum- 
ing constant density for the liquid outside the sphere. 

Dealing with the growth or dissolution of a sphere 
of finite initial size increases the difficulty of finding 
solutions. Several authors have used approximate 
solutions, for example Epstein and Plesset [4], Cable 
[5] and Doremus [6], whilst others, such as Readey 
and Cooper [7], Cable and Evans [8] and Duda and 
Vrentas [9], have solved the differential equations 
numerically, but their methods were not properly 
tested against exact solutions where such tests were 
possible. The present authors are especially interested 
in predicting the behaviour of gas bubbles containing 
two or more independently diffusing gases, a topic of 
considerable importance in the refining of glass melts 
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(Cable [10]), where numerical solution of the differen- 
tial equations is unavoidable. 

This work was undertaken because comparison 
with Scriven's predictions seemed the soundest way of 
testing any numerical methods that were developed. 
This paper confirms the correctness of Scriven's analy- 
sis and extends it by solving the equations for the 
initial transient stage of growth from finite original 
size and also by applying another test, conservation of 
the mass of solute transferred across the interface, to 
both Scrivcn's solutions and the present numerical 
methods. 

Since electron microscopy became a standard lab- 
oratory technique, experimental measurements on 
growing spheres have not been restricted to sizes much 
larger than the nucleus. Also particles up to a few 
micrometres in diameter often remain almost spheri- 
cal even when larger crystals develop more complex 
morphology. Knowledge of the transient behaviour of 
spheres may therefore sometimes be of considerable 
practical interest. The influence of surface tension 
often needs to be considered in such cases and is easily 
introduced into numerical solutions, although it is not 
treated in this paper. 

2. Statement  of the problem 
Frank [2] pointed out that solutions apply equally well 
to both heat conduction and mass transfer, but the 
arguments are presented here only in terms of mass 
transfer which will generally be slightly more complex. 

An isolated sphere of uniform and constant proper- 
ties is considered in an infinite body of liquid in which 
there is no flow except for the radial velocity which 
may result from the change in volume of the system 
when solute is transferred across the interface. Mass 
transfer is assumed to be controlled by diffusion in the 
liquid, equilibrium being always maintained at the 
interface. Diffusivity is taken to be independent of 
concentration but the density of the solution may 
vary; the partial molar volumes of solute and solvent 
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are constant but not necessarily equal. Viscous, iner- 
tial and surface tension forces are assumed to have no 
influence on transport in the liquid or conditions at 
the interface. Chemical reactions do not complicate 
the behaviour. 

If  c~ is the molar concentration of  species i and y~ is 
the volume fraction of  that species, we have for only 
one solute 

Yl + Y i  = 1 and civi = yi 

(i = 1, 2) (1) 

where v~ is the partial molar volume of that species. 
The volume average velocity, u, at a point in the liquid 
must be the sum of the contributions by the solute 
(i = 1) and the solvent (i = 2), so that 

u = Y lUl  + (1 - Yl) u2 ( 2 )  

For conditions of  spherical symmetry the equation of  
continuity for each component is, if r is radius and t 
time, 

0ci 1 0 
~ t  + ~ r ( r 2 u ' G )  = 0 i = 1 ,2  (3) 

Taking all of  these equations into account leads to 

1 0 ( r2u)  = 0 (4) 
F Or 

from which it follows that the velocity in the liquid 
outside the sphere is 

u(r) = (a/r)2u(a) (5) 

where a is the radius of  the sphere. As no solvent is 
transferred across the surface of  the sphere (a con- 
dition that could be relaxed, see Frank [2]), 

u2(a) = da/dt  (6) 

The rate of  transfer, J, of  the solute into the growing 
sphere must be given by the difference between the 
velocity of  the solute, ui (a), and that of  the interface 
itself, 

da ( d_~) 
J = c s -~  = --ca( a ) u l (a)- -  (7) 

where cs is the molar concentration of  pure solute in 
the sphere. As cs is constant, 

u~(a) = (1 C-~a~)da 
c (8)  

Using Equation 2 and the other above relations gives 
the velocity of  the liquid at the interface to be 

da 
u(a) = (1 - c~v,) --~. (9) 

The diffusive flux into the sphere must be equal to 
the difference between the velocity of  the solution and 
that of  the solute, hence 

D (0~---r)o = c~[u(a)--u,(a)] (10) 

where D is the diffusion coefficient. Combination of  
the last three equations now gives the rate of  growth 

in terms of  the diffusive flux as 

da D { 0 ' ~  
(11) 

d-~ = c.[1 - c,(a)v.] 

It is now necessary to consider the equation describ- 
ing diffusion in the liquid; an overall material balance 
for solute reduces to 

0-~ Or 2 + - ~ ~rr (12) 

if e = 1 - csv~: however, this equation does not 
require Vl = v2 as assumed by Striven. The boundary 
conditions implied by the assumptions are 

c(a) = ca and c(oo) = c= t /> 0 (13) 

3. Ana ly t ica l  solut ions 
After assuming that Oc/Ot = 0, Frank [2] solved 
Equation 12 for the boundary conditions given by 
Equation 13 for the special case ~ = 0, that is 
u(r) = 0, and the range of  such solutions was exten- 
ded by Scriven to the general case ~ # 0. These auth- 
ors thus assumed that there was a unique function for 

which required 

c(r, t) = c(s) (14) 

r 
s = (15) 

2(Dt) 1/2 

For growth from zero this gave 

a = 2fl(Dt) 1/2 (16) 

According to this model the concentration profile is 
given by 

c ( r )  = c = - - 2 , 2 c s [ 1  (1--e)]c, 

x fi_./ exp {/~2[I + 2ex - (1 - x)-2]} dx 

(17) 

and, on introducing the boundary conditions, the rela- 
tion between the solubility parameter ~b and the 
growth rate/~ is 

C ~  - -  C a 

c, - c = ( 1 - O  

= 2/~ 2 ~ exp {/~2[1 + 2e, x - ( 1 - x ) - 2 1 }  d x  (18) 

To confirm the validity of  this analysis and to 
demonstrate the role of  the partial molar volumes, 
conservation of  material may be demonstrated as fol- 
lows. Consider a volume element containing ni moles 
of  solute and n2 moles of solvent which contribute 
volumes of 

nlvl + n 2 v  2 = V (19) 

As ni = ci V by definition, ~ e  volume of solvent may 
be written as 

= v ( 1 - y l )  (20) 

If the content of  solute changes from n to n' as a result 
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of diffusion 

n - n'  = c V -  c'V" 

(. <) - - -  - (21)  
V '1 cv I 1 .~- C"V 1 1 - -  cvl 

and combining the last two equations leads to 

n -- /'I' C -- C' C -- C' 
= = (22) 

V 1 - cvl 1 - (1-8)c/c, 

Note that this does not require v~ = v2. Conservation 
of  solute for a sphere growing from zero thus requires 
that 

1 
f~ 4nr2(c= -- C) dr = 47ra3c~/3 

1 (1 I ~ C ~  ~C~ I 

(23) 

Applying this test to Scriven's solution (Equation 
17) leads to the condition 

1 - ( 1 - ~ ) c , / c ,  I :  ( r )  2 G 6fl 2 
1 - ( 1  - ~)c=/c, . -  

x -o/, exp {if[1 + 2~x - (1 - x)-2]} dx d(r/a) 

= 1 (24)  

A fourth-order Runge-Kut t a  numerical technique 
was therefore used to solve 

I(w) = foeXp{fl2[l + 2 8 x - -  (1 - x)-2]}dx 

(25) 

with w = 1 - aft, the discrete pairs wj, I(wj) being 
used to confirm the validity of Equation 24, that is 
conservation of mass. This test was made for five 
values of  fl covering the range 0.01 to 20 with ~ equal 
to both 0 and 1 in all cases: nine of the results gave 
G = 1.000 and the tenth was 0.998. These results were 
considered very satisfactory and confirmed the accu- 
racy of  the numerical methods used to solve Equations 
17 and 25, as well as demonstrating conservation of  
mass. 

4. Numerical  solutions for f inite initial 
size 

For this purpose it is useful to cast the equations into 
dimensionless form. The following variables were 
used, 

r a Dt 
X . =  - -  R = ~ Z = - -  

a ao a~ 
(26) 

F = c --coo 

Cs - -  C a ( 1  - -  8) 

in which a0 is the initial radius of the sphere. Equation 
12 is thus transformed into 

--Oz = - - O x  a + + R ( x -  ~x -2) dR -~xOF (27) 

whilst the rate of growth of the sphere (Equation 11) 
becomes 

__dRdz = --Rl(~)x=~ (28)  

The boundary and initial conditions become 

F(oo) = 0 F(R)  = -gp 
(29) 

F(x) = 0 x >  1, z = 0 

Equation 17 suggests that for large R the solutions 
should become a function of only x = fla. Trans- 
formation of the space variable into x therefore immo- 
bilizes the interface and assists convergence of  the 
finite difference solutions by reducing the influence of 
a second independent variable (time), especially for 
large R. 

The finite difference numerical procedures were 
based on the truncated series expansion 

0F 
F(x + 6x) = F(x) + (6X) ~x 

02 F 
+ ½(6x) 2 - ~  + • •. (30) 

Algorithms were derived to deal with radial intervals 
of variable amplitude in which the sufftxesj and l refer 
to radial position and time step, respectively. Apply- 
ing Equation 30 to the three points (x s - ~xl), x s and 
(x s + 6x2) yields 

OF 1 
0x 6xl + gx2 

] x 

(30 

and 

x 

where 

c~xj 

02F 2 

0x 2 6x  I q- 6x  2 

( I I ) Fj_,,, l F "Fy+''' F i t+  (32) 

= X j -  Xj_ 1 a n d  6X 2 = X j + I - - X  j 

(33) 

Local balances involving two time steps l and / + 1 
were obtained as an average for the discrete forms of 
the equations at those time steps, the concentrations 
Fj_la+l, Fjj+I and Fj+l,t+l being expressed as 

= l , j - I  F j - I , I + I  Ji- oc2,j_ 1 Fj, I.F1 -[- =3d'-I  6-FI,I-t-I  ~--" =4 

j =  2 , 3 , . . . , n -  1 (34) 

The boundary conditions 

F~a+, = F(R)  = -~b and 
(35) 

F.,,+ l = F(oO) = 0 

simplify the first and last balances; for j = 2 and 
j = n - 1 ,  

=2,1 F2,t+l + =~.l F3,t+l = =4A + ~bai,1 (36) 

and 

=1,.-2 F.-2a+l + =2,.-2 F . - ,a+ l  = =4,.-2 (37) 

The resulting system of equations was solved by 
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T A B L E  I Evolution o f  growth rates towards the asymptotic 
regime for the case s = 1 

R #' = R/(2z ~/2) 

~b = 0.01 4~ = I ~ = 100 

2 0.0885 1.745 139.5 
5 0.0771 1.378 104.1 

10 0.0758 1.336 99.9 
102 0.0753 1.320 98.3 
103 0.0753 1.320 98.2 
105 0.0753 1.320 98.2 

the Crank-Nicholson [11] implicit method: implicit 
methods are usually more stable than explicit ones and 
prevent the growth of rounding errors or other errors 
that may arise from the interpolations needed to redis- 
tribute the radial mesh points. 

The procedures developed for this work included 
internal optimization of the variable space and time 
mesh intervals without intervention by the user. This 
makes the programs simple and economical to use 
whilst maintaining accuracy. Appropriate algorithms 
select the time interval according to the time derivative 
of the radius, and the spacing of the space mesh points 
is redistributed throughout the process according to 
the shape of the concentration distribution and the 
distance that it occupies. Time intervals were defined 
to obtain a nearly constant relative change of radius 
(Aa/a) which is clearly better than using a fixed time 
interval. A fixed time interval would be likely to give 
poor accuracy at the beginning and be wasteful of 
computing time at longer times. Working with a con- 
stant change in radius (Aa) is also inefficient, especially 
for growth to large sizes. 

Radial mesh points were distributed to give nearly 
equal concentration differences near the interface, but 
in the tall of the profile it was convenient to keep the 
ratio of adjacent mesh spaces smaller that 1.5. Further 
details of these criteria and the tests made to justify 
them have been given by Frade [12]. 

5. Numer ica l  results 
As Equation 16 may be written in dimensionless form 
a s  

logR = log(2fl) + ½ 1 o g z  (38) 

plotting numerically computed results in logarithmic 
form allows ready comparison with the predictions of 

1 I I I 

0 . 8 - -  

0 . 6 - -  

o, / I '  

°i 
- 6  - 4  - 2  0 2 4 

log 2' 

Figure 1 Convergence of  growth from finite initial size towards the 
asymptotic limit for ~ = 1 and values of  ~ from 0.001 to 100. The 
values of  ~ are, from left to right, 100, 50, 20, 10, 5, 2, 1, 0.5, 0.2, 
0.1, 0.01 and 0.001. The dashed lines show growth from zero for the 
largest and smallest values of  4. 

Scriven's analysis, and this is the most obvious test of 
the numerical procedures developed. Fig. 1 shows the 
results of computations for 8 = 1 and ~b from 0.001 to 
100 plotted in this way. After an initial transient all the 
results become parallel straight lines of slope 1/2 as 
predicted by the analytical model. That the limiting 
slope is 1/2 may be seen by putting computed pairs 
of (R, z) data into the dimensionless form of the 
equation (R = 2flz m) and observing that the values 
of fl obtained (fl') do tend to an asymptotic limit (see 
Table I); continuing the computations to R = 105 
did not require excessive computing times. Table II 
demonstrates very satisfactory agreement between the 
asymptotic values of fl' obtained from the numeri- 
cal solutions and those given by Scriven's analysis. 
Table II records, for wide ranges of the parameters, 
the values of ~(/~, s) which the analytical solution 
produces for the values of fl' obtained from the com- 
putations for R = 105. In all cases the two values of 
differ by less than 1%; it is unlikely that experimental 
data would ever exceed this accuracy. 

The analytical solution depends on the existence of 
a unique normalized concentration distribution. Com- 
parison with the evolution of the concentration 
profiles given by the numerical solutions should 

T A B L E  II  Comparisons between finite difference prediction of  the asymptotic regime of  growth from f inite initial size fl' and the 
corresponding analytical predictions 0(fl', ~), for growth from zero size 

0 0.5 1 

0.001 0.022 84 0.001 002 
0.01 0.075 6 0.010 02 
0.1 0.2827 0.1000 
0.95 5.263 0.950 2 

1.9 - - 

1 0  - - 

1 0 0  - - 

0.022 83 0.001 002 0.022 83 0.001 002 
0.075 5 0.010 02 0.075 3 0.010 00 
0.277 9 0.100 0 0.273 4 0.100 0 

1.819 1.000 1.320 1.001 
10.36 1.900 - - 

- - 10.20 10.01 
- - 98.2 100.1 
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Figure 2 Numerically predicted concentrat ion profiles during 
growth from finite initial size for 8 = I, ~b = 0.01; the numbers  
show the corresponding values of  R and points ( +  + )  show 
Scriven's analytical result. Here c = (c - co)/(c® - ca). 

provide further confirmation of the correctness of 
both. Fig. 2 shows the computed concentration 
profiles for e = 1, ~b = 0.01 for several values of R 
from 1.05 to 10; it can be seen that the transformed 
concentration profiles become independent of time 
before R = 2.5 and are then indistinguishable from 
that given by Scriven's analysis• Fig. 3 shows a similar 
comparison for 8 = 1, ~ = 10; other examples all 
showed the same behaviour and excellent agreement 
for the asymptotic profiles. 

The agreement found between the asymptotic 
growth rates and the limiting shapes of the concentra- 
tion profiles when numerical and analytical predic- 
tions are compared is taken to be sufficient evidence 
that both give valid results for very wide ranges of the 
relevant parameters (4 and 8). 

6. T r a n s i e n t  g r o w t h  f r o m  f in i te  in i t ia l  
size 

Figs 1 to 3 show an initial transient stage affecting 
both rates of growth and concentration profiles. The 

1 1.0 11 

0.8 

0.6 
0.4 

0.2 

0 I I 
0 0.02 0.04 0.06 

x - 1  

Figure 3 Predicted concentrat ion profiles, as in Fig. 2, for e = 1, 
4 =  lO. 

Figure 4 Comparison of  rates of  growth from finite initial size 
(dR ' /dz )  with those for growth from zero (213"-/R). The curves arc, 
reading out  from the origin, for q~ = 0.01, 0.1, 1, I0 and 100. 

initial growth from finite size can also be discussed 
in terms of the rates of growth. According to the 
equation for growth from zero the rate is given by 

dR/dz = 2f12/R  (39) 

The ratio of the computed rate of growth (dR'/dz) to 
2ff/R thus compares the rates predicted for growth 
from finite and zero initial sizes. Fig. 4 shows that, 
during the initial transient stage, growth from finite 
size is always faster than for growth from zero but the 
ratio also always approaches unity before the sphere 
has grown very much. This is due to the singularity 
imposed by the initial conditions. In terms of size the 
transient effect is least important for low solubility 
and increases with solubility. Note, however, that the 
behaviour has become almost indistinguishable for 
t~ -- 10 and 100. 

On integrating Equation 39 from z = 0, R = 1 one 
obtains 

R = 2/;(z + z]) j/2 (40) 

i f  z, = l /4 f f .  This relation provides another way of  
comparing the rates of growth from zero and finite 
initial sizes as shown in Fig. 5. The straight dashed line 
there shows Equation 40, which can be seen to be a 
reasonable approximation for small ~b but it becomes 
increasingly poorer as q~ increases. However, results 
for ~ > 100 become indistinguishable from each 
other when presented in this way. Yet the value of 
fl for the asymptotic regime gives quite good 
approximations to the entire process for values of qb 
up to 1. For larger ~b the use of Equation 40 gives 
appreciable errors, particularly for R < 2, and the 
numerical results Should be used. 

7. C o n c l u s i o n  
Exact solutions have 10ng been available for describ- 
ing the diffusion-controlled growth of an isolated 
sphere from zero initial size. Those solutions have 
been used to prove the validity of numerical finite 
difference solutions for growth from finite initial size 
by comparing both predicted sizes and concentration 
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Figure 5 Estimation of growth from finite initial size using the 
constant /~ for growth from zero (see text). From the bottom 
upwards the curves are for q~ = 0.001, 0.01, 0.1, 1, I0 and 100. 

profiles. The concentration profiles for spheres grow- 
ing from finite size achieve their steady state form for 
R > 3, approximately, and growth rates for the two 
cases become indistinguishable at the same time. A 
simple approximation gives generally acceptable 
predictions for the whole course of growth from finite 
size for low or moderate solubility (~b < 1) but the 
numerical results are necessary for higher solubilities. 

Analytical solutions are not possible for dissolution 
of spheres and numerical methods are then necessary. 
The finite difference techniques reported here were 

developed with that in mind and should perform 
equally well for dissolution. Their use for predicting 
the behaviour of dissolving spheres will be reported 
separately. 
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